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Abstract 

The statistical properties of a network of cosmic strings in flat space time are 
analysed using the microcanonical ensemble. This technique, based on the quan- 
tised bosonic string shows that the system is characterised by two distinct phases, 
corresponding to string densities above and below a “critical” density defined in 
terms of the string tension. The importance of these results for the cosmic string 
theory of galaxy formation is then discussed. Finally, it is pointed out why the 
canonical ensemble is not a good description of strings at high densities. 
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1 Introduction 

It is possible that topological defects could have formed following a phase 
transition in the early universe [l]. Cosmic strings are one dimensional 
defects with a mass per unit length, p, determined by the temperature, 
T., of the symmetry breaking. The strings I shall consider were formed 
at the GUT scale and have a correspondingly large mass per unit length, 

PO T: e lO”kgm-’ [2]. After formation, the strings evolve in an expanding 
universe, and one can describe their motion by the action for a fundamental 
(Nambu) string [3], this approximation being valid for strings whose typical 
curvature scale is very much greater than their width - this is usually an ex- 
cellent approximation as the typical scale on the string might be light years 
whereas the string width is about 10-30m. However, it is possible for this 
approximation to break down in regions of high string curvature [4]. 

Simulations of string formation [5,6,7] p roceed by discretising space and 
then laying down phases of a free Higgs field. Strings form when the Higgs 
field wraps around the vacuum as one goes around a loop in spacetime. The 
picture coming from these simulations of string formation is that the network 
is dominated by one long string that takes up roughly 80% of the energy. The 
remainding 20% is in the form of closed loops that follow a “scale-invariant” 
distribution 

n(R)dR o( $e& (1) 
where n(R)dR is the number of loops that have average radius between R 
and R + dR. The evolution of this network in an expanding universe has 
also been studied [6,7] and whilst quantitative aspects of the simulations may 
differ slightly, the overall qualitative picture is remarkably similar. I will give 
an “optimist’s” view of the results first and then point out a possible problem 
that has to be addressed in an analytic framework. The loops of string that 
formed are under high tension and oscillate, this causes them to radiate 
gravitationally, eventually disappearing - by themselves they are never a 
problem and one can show that their contribution to density fluctuations is 
a constant and moreover is the right constant for galaxies to have formed 
by today. The long strings cannot radiate themselves away and their only 
effective energy loss mechanism is chopping off small loops. This has the 
effect of straightening out the long strings and hence reducing the energy 
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contained in them. If this happens then the scale of the long strings (the 
length above which they are wiggly) becomes of order the horion size and 
then their density scales as radiation, p o[ $, exactly as required. 

2 A Potential Problem 

Analytic approaches to the problem of how a string network evolves were 
started by Kibble [8] and Bennett [9]. Their analyses have taken the form 
of equations describing the rate of loop production and recombination from 
and onto the long strings. It is the recombination of loops onto the long 
string that I ignored in the previous discussion - this process has the effect 
of not allowing the long strings to straighten out, thus forcing the density 
in string to decrease slower than radiation. This type of behaviour can be 
a solution to the equations described above and in this regime the strings 
would come to dominate the energy density of the universe and hence would 
automatically rule out cosmic strings as a candidate for a workable theory 
of galaxy formation. However, it is true to say that these approaches in the 
end rely on the simulations to fit various unknown parameters, such as the 
loop production function. 

3 A New Approach 

In this section I will describe the results of some work that Turok and I did 
concerning the’statistical properties of a network of cosmic strings in flat 
spacetime [lo]. 

It will turn out that strings have a very peculiar density of states, p(m). 
In fact this is an exponentially increasing function of m, 

p(m) Y m-“e” (4 

with a and b positive quantities. This is the “Hagedorn” [ll] spectrum - first 
discovered in trying to understand the behaviour of hadrons at very high 
density. Systems with density of states of this form were first examined by 
Frautschi[l2] and Carlitz[l3]. 

Although I shall be working in the microcanonical ensemble, let me first 
explain one striking fact about strings using the canonical ensemble. The 
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partition function actually diverges for p > b :- 

Z(p) = JdEp(E)eeBE 

z 
J 

dEe-E(b-P) 

(3) 

where b is given by (2) and p = $. In other words at temperatures T > T. = 
i one cannot have strings in thermal equilibrium with a heat bath. The last 
part of my talk will deal with the canonical ensemble in more detail. 

I shall now return to the problem of state counting in the more funda- 
mental microcanonical ensemble. Consider a box of volume V (in flat space) 
containing strings with total energy between E and E+dE, the total number 
of microstates, R, is given by, 

cl = &ln (4) 
n=1 

fin = $,g Jm; p(mi)dmi 
x 

J 
dD+‘p;6(E - C E,) 

j 

x 
6D+1(Cj Pj) 

V 

The delta functions constrain the total energy to lie in the desired range 
and force the total momentum to be zero. The number of loops, n, is allowed 
to vary and the n! accounts for the indistinguishability of the loops. The 
quantity D is simply the number of tranverse dimensions. Each loop has the 
usual centre of mass degrees of freedom plus the internal excitation states 
described by p(mi). I shall explain why the mass integrals have a lower cutoff, 
me, later on. 

The task is now to ask for which n is the summand in (4) maximised. With 
the usual assumption of ergodicity, the system will end up in configurations 
corresponding to the maximum value of S-L In order to calculate p(m;) one 
has to be able to count states and this can be done by quantising the bosonic 
string. Cosmic strings have transverse oscillations - these are their physical 
degrees of freedom. In quantising one has to ensure that it is these degrees of 
freedom that are being counted. The light cone gauge [14] is ideally suited for 
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this purpose, here one only quantises the tranverse mode oscillators. Some 
words of explanation are needed here - in general I will not be working in 26 
spacetime dimensions, and as such the Lorents algebra will not close. This 
is not a problem here as I am only interested in counting states of a free 
theory - interactions are totally neglected apart from their role in allowing 
the system to equilibrate, Upon solving the constraint equations, it is easy 
to show that (for closed strings):- 

?n* = p2 = 4/m(N + a) (5) 

N=* (6) 

where N (I?) is the level number operator for left (right) moving modes. With 
these two bits of information and a little number theory [15,16,10] one can 
show for a closed string that, 

p(m)dm x m-(D+2)ehdm (7) 

with b = 4%. Now I will explain why a lower cutoff in the mass integrals in 
(4) was put in by hand. I mentioned in the introduction that cosmic strings 
can only be approximated by the Nambu action if their radius >> width, this 
means one can only consider string masses > ~‘1~ as the string width is 
given roughly by p- t/r. This imposes a lower cutoff in the string loop mass. 
Secondly, the density of states formula (7) was derived using the partition 
function of Hardy and Ramanujan [16] which is only valid for large N - from 
(5) this implies large m, also meaning one must impose a lower cutoff in the 
integrals. 

Let me now return to the integrals in (4). Having calculated p(m;) one can 
now proceed to do them. However, in this short talk I do not have the time 
(or the inclination!) to enter into any detail concerning their evaluation but 
I shall refer you to the literature [lo]. It turns out that the network has very 
different behaviour in two density regimes. The critical density ps Y rnt z CL’ 
- this is the density at which the smallest loops have separations of order their 
radius. 
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4 High Density results 

This corresponds to energies > rims. One can reduce the integrals in (4) 
down to, 

s-l, z 
i/m. 

dmiO( E - C mj) 

’ x etmi&pi 

v4 

This is clearly maximised when (n - 1) strings have masses around m,, and 
the remainding string takes up the vast majority of the energy E -(n - l)m,,. 

It is trivial to re-express this in terms of energy densities:- 

p - Pint = CUlLa?taTZt (9) 

where pi,,, is the density in the long string. This formula has been checked 

p-p., 
031 

J/(/yj 

0 02 34 06 C8 o. 

Fig. 1. Remits from Sakellariadou and Vilenkin (171, showing the energy density 
of finite loops as a function of the total string energy density p . The density 
is plotted in units of /.? and the transition between high and low density occurs 
around D = 0.2. 

by a numerical simulation of cosmic string formation in flat spacetime [17], 
where one can exactly integrate the equations of motion. I would also like to 
point out that this approach predicts that most of the energy goe~s into one 
long string, just as is seen in other simulations [5,6,7]. 

One can also ask after the 20% of string that is in the form of smaller 
loops. It is very easy tom derive number distributions for these strings by 
tixing one of them to have a mass M in (4). This then gives the number 
of microstates for one string to have mass M and the rest to have energy 
(E - M). Since by assumption all microsiates are equally probable, this 
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number must be directly proportional to the probability of one string having 
mass M, this in turn is proportional to n(M), the number of strings with 
mass between M and A4 + dM. One can show [lo], 

n(M) Ix vcimz (10) 

and using the result (lo] that excited string trajectories follow Brownian 
walks, one has, 

dr 1 
n(r)dr o[ -- 

f ++1 (11) 
which is the “scale-invariant” distribution seen in simulations of string for- 
mation. 

5 Low Density Results 

Here one finds that R, is maximised for n x 5 and hence all strings are 
close to their smallest mass. Quantifying this, it can be shown that [lo] 

n(M) = e -aMM/mo Jm 
(12) 

where Q = In(F) and is bigger than one for low densities. This formula 
has also been checked against results coming from string simulations at low 
density in flat spacetime [18]. 

Fig. 2. The rquarea arc the results of Smith and Vile&n [lg] and the circles 
correspond to equation (12). The amplitude of the dirtribution and the value of a 
were fitted using the results for a cutoff of 2 in energy and then there values were 
used to check agreement with the results for a cutoff of 8. 
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6 Discussion 

The results at low density show that in flat spacetime, the equilibrium distri- 
bution of strings is one in which the string grinds itself up into the smallest 
possible loops. This means that the reconnection probability is very low 
and hence string domination is extremely unlikely. What I have just said 
completely neglects the effect of expansion and so may be thought to be too 
naive. However, let me consider the regime where the length scale on the 
long string is a decreasing function of the horizon size (Z t). This means the 
density in long strings is decreasing slower than radiation and string domina- 
tion will result ( this is allowed by the approaches of Kibble [g] and Bennett 

PI.) 
It is well known that once the scale on the network is well inside the 

horizon the effects of expansion become unimportant and the flat-space re- 
sults are valid - where the network is not dominated by one long string. The 
only question is then, how quickly does the system reach equilibrium? If one 
makes the guess that this is of order the string scale then within a time very 
much less than one expansion time, the long string will chop off loops and 
staighten out until the scale on the string becomes of order the horizon. At 
this point the density in string will scale as radiation and the network natu- 
rally re-enters the “scaling solution.” Finally I would like to add that these 
results have recently been rederived by considering the Higgs field degrees of 
freedom rather than the quantised bosonic string as I have done here [20]. 

7 Which Ensemble ? 

In the Canonical ensemble one calculates quantities at a given temperature. 
However, as can be seen from (3) at high temperature, the integrand is not 
a sharply peaked function of E and hence one cannot associate a definite 
energy with a given temperature. Indeed one can calculate the moments of 
the energy and they diverge as T approaches 2’. = l/b [lo]. In other words 
the system is characterised by large fluctuations. 

However, at low densities (i.e. temperatures well below Z’,) one can safely 
use the canonical ensemble and calculate moments of the energy, specific 
heats etc.. Moreover, one can show that the specific heat is positive even 
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though there is a finite density of massive modes (see (12)) - contrary to 
previous claims that c, is negative for massive string modes [19]. 
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